10th International Conference

ABSTRACT:

Simulation of Low Frequency Noise, LFN, in MOSFETs is known to account for the experimental data and a threeparameter BSIM model was found to be adequate for simulating the LFN data. However, a more physical approach, evoking the trapping – release phenomena on the dielectric/channel Si interface, requires that the power spectral density, PDS, should be proportional to g_m^2 , where $g_m = \delta I_d / \delta V_g$ (transconductance). For small V_d (ohmic region) this trend was observed to break down at sufficiently high drain currents (high V_g), where the PSD function is seen continue to rise, preserving, in some cases, an almost quadratic I_d dependence, in spite of the simultaneous decrease in $g_m (V_g)$.

INTRODUCTION

This paper is meant to contribute to the discussion on the mechanism of low frequency noise, LFN, generation in the region of gate voltages, Vg,, where the channel current, I_d , enters the saturation regime [1]. In that region of I_d intensities the number fluctuation mechanism of LFN generation should become less because of the decrease efficient in the transconductance, $g_m = \delta I_d / \delta V_g$. However, the LFN continues to increase as for the lower Id. These observations were first made when LFN data were simulated using some accepted models, such as SPICE, HSPICE and BSIM [1,2].

DISCUSSION

It is known that the trapping/release phenomena occurring at/or near the interface between the gate dielectric and the Si channel account for the LFN in a wide range of the drain current, I_d , intensities [3,4]. A single charge trapping de-trapping induces a flat-band potential fluctuation δV_{fb} =-q/C_{ox}, which, in turn, can be transformed into the drain current fluctuations δI_d = $(\delta I_d / \delta V_{fb}) \delta V_{fb} = (g_m) \delta V_{fb}$. The sum of such elementary fluctuations, squared, gives the LF number-fluctuation noise (Δn), as demonstrated in the celebrated paper of McWhorter [3]. There is no reason to question the validity of that approach in the region of higher I_d intensities. However, the power spectral density of current fluctuations, S_{Id} is found to continue to rise also in the region where g_m decreases, with a somewhat diminished slope. This problem has been already evoked [1] but as yet found no satisfactory explanation.

As we use now an automatic PSD data-taking routine [5], we can measure $S_{Id}(Vg)$ at V_g varied by small increments and we can thus produce families of LFN characteristics at any fixed frequency, f, with no major time investment. In Fig. 1 we compare a $I_d(V_g)$ and

 $\sqrt{(S_{Id}(V_g) \text{ taken at 10 Hz, on a W/L=20/0.3 \mu m, all Si})}$ pMOSFET at V_d=50mV (for device description cf. [6]).

Fig. 1. Comparison of static and a noise characteristics, resp. $I_d(V_g)$ and $\sqrt(S_{Id}(V_g)$ @ at 10 Hz, taken on a W/L=10/0.3 μm pMOSFET.

As is seen in Fig. 1, both functions follow the same trend, which means that S_{Id} is almost a quadratic function of I_d , even though the latter enters the saturation regime at the left hand side of the drawing, where g_m is significantly reduced. Such a near-perfect matching of the static and noise characteristics is not always found, however the absence of a decrease of LFN at the flattening of $I_d(V_g)$, (where g_m diminishes) seems to be general. It should be reminded here that this dependence is given in the HSPICE model. On the other hand a nearly quadratic I_d dependence in S_{Id} corresponds to the SPICE formulation, $S_{Id}(V_g)$ =const* I_d^{AF} , with $AF\approx 2$. One should mention it here, for completeness, that a three-parameter BSIM model has been successfully used to fit the MOSFET data [2].

A possible mechanism capable of increasing the LFN at high V_g is that of correlated "number-mobility", Δn - $\Delta \mu$ noise [4], as the trapping-release at high V_g is so intense that it can significantly affect the carriers' mobility. However, Δn - $\Delta \mu$ cannot fully compensate the g_m diminution in the respective region of I_d intensities.

Another mechanism contributing to the LF noise generation is the noise generated in the access resistance, R_{acc} . It should be noted that in transistor structures the access resistance noise S_{acc} can also have a 1/f component, which can be mixed into other 1/f contributions. In the ohmic region, S_{acc} can be best visualized in normalized S_{Id}/I_d^2 data, as that contribution to the total current-normalized noise is equal to

$$S_{acc}/R_{acc}^{2} = S_{acc} \left(I_{d}/V_{d}\right)^{2} .$$
 (1)

If that contribution is significant, the normalized data show an upward swing, with a quadratic current dependence in the high current regime. This often happens when the transistors are aged (large S_{acc}). In the data we present no such feature was observed, therefore the LFN generation in the access resistance has been disregarded. There have been some attempts [7, 8] to explain the increase of LFN beyond the Δn region, precisely by the presence of the access or "series resistance" between the source and drain terminals, with total resistance R_d . Recasting Eq. (1) in the $\Delta \mu$ -formalism, with a Hooge α_{acc} constant, we have

$$S_{Rsd}/R_d^2 = \alpha_{acc} q\mu' R_d/Xf, \qquad (2)$$

where μ ' is the carrier mobility in the access resistance (made probably of Si) X is an effective length needed for obtaining the electric field E in the access resistance such that $E=V_d/X$. That mechanism should be strongly technology-dependent (through the parameters of the access resistance). However, as the access resistance is small in good-quality devices, the Hooge constant required may take too elevated values to be realistic. Nevertheless, this novel proposition of explaining the LFN increase at high currents merits a further study.

Finally, one should also mention the contribution of the thermal noise, S_{th} , of the channel to the total noise. In the case of measurements involving a current amplifier the thermal noise contribution can be calculated [5] and it is given by the expression,

$$S_{th} = 4kT(G_{AC})^2/R_{//},$$
 (3)

where G_{AC} is the current amplifier's AC gain. The latter is equal to the resistance R_f in the feedback loop of the amplifier, if no additional amplification is provided in the AC channel of the current amplifier and $R_{/}=1/R_f+1/R_d$ with $1/R_d = (\delta I_d/\delta V_d) = I_d/V_d$ (in the linear regime). For the data presented in Fig. 1, the amplitude of S_{th} was found to be about 6 times lower than the amplitude of the total measured noise. It should also be mentioned that at 10Hz the noise still showed a distinct 1/f character, implying that the thermal noise contribution was small. However, at f>500Hz the white noise contribution to the total noise was perceptible at the G_{AC} values used in the pertinent current measurement range. The thermal noise contribution is mentioned here in order to show how important the instrumental factors could be for a correct data interpretation and analysis.

The problem of the origin of the LFN generation in the I_d saturation regime is important not only for modeling, but also because it presents an interesting problem in device physics. Clearly more work is required to elucidate its origin.

ACKNOWLEDGEMENTS

Help of Mr. Denis Blachier in data taking and analysis is gratefully acknowledged. The MOSFETs used in this work have been fabricated at ST-M Crolles in 1996, and were discussed previously in ref. [5].

REFERENCES

 Mateo Valenza, "Noise Modeling for Circuit Simulation", presented at AK-MOS Group Meeting, May 5, 2003, Crolles, France, unpublished, available on http://www.grabinski.ch/ak-mos.
 E.P. Vandamme and L.K.J. Vandamme, "Critical Discussion on Unified 1/f Noise Models for MOSFETs" IEEE TED 47, 2146 (2000).
 A.L. McWhorter, "1/f Noise and Germanium Surface Properties", in Semicond. Surface Physics, R.H. Kingston, Editor, Penn. Univ. Press, 1957 p. 206.
 G. Ghibaudo "Improved Analysis of Low Frequency Noise in Field-Effect MOS Transistors" Phys. Stat. Solidi (a) 124, 571 (1991).

[5] J.A. Chroboczek, "Automatic, Wafer-level, Low Frequency Noise Measurements for the Interface Slow Trap Density Evaluation", Proc. IEEE-ICMTS'03 p. 95.
[6] J. Allieu, T. Skotnicki, R. Gwozdziecki, P.Bouillon, J.L. Regolini, G. Bremond and A. Souffi "Examining the Potential of SiGe Epitaxial Channels for CMOS", ISDRS 1997, p. 501.

[7] E. Simoen and C. Clayes, "On the Flicker Noise in Submicron Silicon MOSFETs", Solid State Electronics, 43, 865 (1999).

[8] N.B. Lukyanchikova, M.V. Petrichuk, N.P. Garbar, L.S. Riley, and S. Hall, "A Study of Noise in Surface and Buried Channel SiGe MOSFETs with Gate Oxide Grown by Low Temperature Plasma Anodization", Solid State Electronics, **46**, 2053 (2002).